Resonant antidromic cortical circuit activation as a consequence of high- frequency subthalamic deep-brain stimulation Running head: Antidromic cortical activation with STN-DBS

نویسندگان

  • S. Li
  • G. W. Arbuthnott
  • M. J. Jutras
  • J. A. Goldberg
  • D. Jaeger
چکیده

Deep brain stimulation (DBS) is an effective treatment of Parkinson's disease (PD) for many patients. The most effective stimulation consists of high-frequency biphasic stimulation pulses around 130 Hz delivered between two active sites of an implanted depth electrode to the subthalamic nucleus (STN-DBS). Multiple studies have shown that a key effect of STNDBS that correlates well with clinical outcome is the reduction of synchronous and oscillatory activity in cortical and basal ganglia networks. We hypothesized that antidromic cortical activation may provide an underlying mechanism responsible for this effect, as stimulation is usually performed in proximity to cortical efferent pathways. We show with intracellular cortical recordings in rats that STN-DBS did in fact lead to antidromic spiking of deep layer cortical neurons. Furthermore, antidromic spikes triggered a dampened oscillation of local field potentials in cortex with a resonant frequency around 120 Hz. The amplitude of antidromic activation was significantly correlated with an observed suppression of slow wave and beta band activity during STN-DBS. These findings were seen in ketamine-xylazine or isoflurane anesthesia in both normal and 6-OHDA lesioned rats. Thus, antidromic resonant activation of cortical microcircuits may make an important contribution towards counteracting the overly synchronous and oscillatory activity characteristic of cortical activity in PD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation.

Deep brain stimulation (DBS) is an effective treatment of Parkinson's disease (PD) for many patients. The most effective stimulation consists of high-frequency biphasic stimulation pulses around 130 Hz delivered between two active sites of an implanted depth electrode to the subthalamic nucleus (STN-DBS). Multiple studies have shown that a key effect of STN-DBS that correlates well with clinica...

متن کامل

Effects of antidromic and orthodromic activation of STN afferent axons during DBS in Parkinson's disease: a simulation study

Recent studies suggest that subthalamic nucleus (STN)-Deep Brain Stimulation (DBS) may exert at least part of its therapeutic effect through the antidromic suppression of pathological oscillations in the cortex in 6-OHDA treated rats and in parkinsonian patients. STN-DBS may also activate STN neurons by initiating action potential propagation in the orthodromic direction, similarly resulting in...

متن کامل

Impact of Cortical Input on Subthalamic Activity during Deep Brain Stimulation

Cortical afferences (e.g., primary motor cortex M1, and supplementary motor area SMA) are believed to play a role in the generation of abnormal oscillatory activity in the subthalamic nucleus (STN) in Parkinson’s disease (PD). Using a computational model, we investigate how cortical inputs impact STN activity during deep brain stimulation (DBS). When cortical input to the STN is constant, high-...

متن کامل

Activation of subthalamic neurons by contralateral subthalamic deep brain stimulation in Parkinson disease.

Multiple studies have shown bilateral improvement in motor symptoms in Parkinson disease (PD) following unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) and internal segment of the globus pallidus, yet the mechanism(s) underlying this phenomenon are poorly understood. We hypothesized that STN neuronal activity is altered by contralateral STN DBS. This hypothesis was test...

متن کامل

Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007